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ABSTRACT

Wound healing is an evolutionarily conserved, complex, multicellular process
that, in skin, aims at barrier restoration. This process involves the coordinated
efforts of several cell types including keratinocytes, fibroblasts, endothelial cells,
macrophages, and platelets. The migration, infiltration, proliferation, and differ-
entiation of these cells will culminate in an inflammatory response, the formation
of new tissue and ultimately wound closure. This complex process is executed and
regulated by an equally complex signaling network involving numerous growth
factors, cytokines and chemokines. Of particular importance is the epidermal
growth factor (EGF) family, transforming growth factor beta (TGF-b) family,
fibroblast growth factor (FGF) family, vascular endothelial growth factor
(VEGF), granulocyte macrophage colony stimulating factor (GM-CSF), platelet-
derived growth factor (PDGF), connective tissue growth factor (CTGF), interleu-
kin (IL) family, and tumor nerosis factor-a family. Currently, patients are treated by
three growth factors: PDGF-BB, bFGF, and GM-CSF. Only PDGF-BB has suc-
cessfully completed randomized clinical trials in the Unites States. With gene ther-
apy now in clinical trial and the discovery of biodegradable polymers, fibrin mesh,
and human collagen serving as potential delivery systems other growth factors may
soon be available to patients. This review will focus on the specific roles of these
growth factors and cytokines during the wound healing process.

Wound healing is a complex process involving several
overlapping stages that include inflammation, formation
of granulation tissue, reepithelialization, matrix formation
and remodeling. Upon injury to the skin, the epidermal
barrier is disrupted and keratinocytes release prestored in-
terleukin-1 (IL-1). IL-1 is the first signal that alerts sur-
rounding cells to barrier damage.1–11 In addition, blood
components are released into the wound site activating the
clotting cascade. The resulting clot induces hemostasis and
provides a matrix for the influx of inflammatory cells.
Platelets degranulate releasing alpha granules, which se-
crete growth factors such as: epidermal growth factor
(EGF), platelet-derived growth factor (PDGF) and trans-
forming growth factor-beta (TGF-b). PDGF, along with
proinflammatory cytokines like IL-1, are important in at-
tracting neutrophils to the wound site to remove contam-
inating bacteria (reviewed in Hantash et al.).12 With the
help of TGF-b, monocytes are converted to macrophages
which play an important role in augmenting the inflam-
matory response and tissue debridement. Macrophages
initiate the development of granulation tissue and release a
variety of proinflammatory cytokines (IL-1 and IL-6) and
growth factors (fibroblast growth factor [FGF], EGF,
TGF-b, and PDGF).

With the assistance of platelet released vascular endo-
thelial growth factor (VEGF) and FGF, endothelial cells
proliferate and angiogenesis ensues. This process is essen-

tial for the synthesis, deposition, and organization of a
new extracellular matrix (ECM). FGF, TGF-b, and
PDGF then permit fibroblast infiltration. TGF-b and
PDGF also initiate phenotypic changes in these cells con-
verting fibroblasts into myofibroblasts which align them-
selves along the borders of the ECM to generate a
constrictive force, facilitating wound closure (reviewed in
Hantash et al.).12

Within hours of injury, reepithelialization is initiated
and the release of EGF, TGF-a, and FGF act to stimulate
epithelial cell migration and proliferation. This process be-
gins with the dissolution of cell–cell and cell–substratum
contacts followed by polarization and migration of kera-
tinocytes over the provisional ECM. Once wound closure
(100% epithelialization) is achieved, keratinocytes un-
dergo stratification and differentiation to restore the bar-
rier (reviewed in13,14).

Matrix formation requires the removal of granulation
tissue with revascularization. A framework of collagen
and elastin fibers replaces the granulation tissue. This
framework is then saturated with proteoglycans and glyco-
proteins. This is followed by tissue remodeling involving
the synthesis of new collagen mediated by TGF-b, and the
breakdown of old collagen by PDGF. The final product of
this process is scar tissue.

The success of the wound healing process depends on
growth factors, cytokines, and chemokines involved in a
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complex integration of signals that coordinate cellular
processes. These agents are biologically active polypep-
tides that act to alter the growth, differentiation and me-
tabolism of a target cell. They can act by paracrine,
autocrine, juxtacrine, or endocrine mechanisms, and effect
cell behavior as a consequence of their binding to specific
cell surface receptors or ECM proteins. Binding to these
receptors triggers a cascade of molecular events. The end-
point of this signaling is the binding of transcription fac-
tors to gene promoters that regulate the transcription of
proteins controlling the cell cycle, motility, or differentia-

tion patterns.13 This review will summarize the major
growth factors and cytokines involved in wound healing
with particular focus on the EGF family, TGF-b family,
FGF family, VEGF, granulocyte macrophage colony
stimulating factor (GM-CSF), PDGF-BB, CTGF, IL fam-
ily, and tumor necrosis factor (TNF)-a family (Table 1).

EPIDERMAL GROWTH FACTOR (EGF) FAMILY

Perhaps the best-characterized growth factors in wound
healing are those from the EGF family. The ligands

Table 1. Major growth factors and cytokines that participate in wound healing with cell types and their respective roles in both acute

and chronic wounds are listed

Growth

Factors Cells Acute Wound Function Chronic Wound

EGF Platelets

Macrophages

Fibroblasts44,45

Increased levels46,47 Reepithelialization48 Decreased levels51

FGF-2 Keratinocytes

Mast Cells

Fibroblasts

Endothelial cells

Smooth muscle cells

Chondrocytes58,75,76

Increased levels79,81 Granulation tissue

formation

Reepithelialization

Matrix formation and

remodeling277

Decreased levels52

TGF-b Platelets

Keratinocytes

Macrophages

Lymphocytes

Fibroblasts92,93,96

Increased levels98 Inflammation

Granulation tissue

formation

Reepithelialization

Matrix formation and

remodeling81,101,107

Decreased levels52

PDGF Platelets

Keratinocytes

Macrophages

Endothelial cells

Fibroblasts58,140,141

Increased levels144 Inflammation

Granulation tissue

formation

Reepithelialization

Matrix formation and

remodeling141,142,146,153

Decreased levels52

VEGF Platelets

Neutrophils

Macrophages

Endothelial cells

Smooth muscle cells

Fibroblasts69,160–164

Increased levels185 Granulation tissue

formation177,180

Decreased levels52

IL-1 Neutrophils

Monocytes

Macrophages

Keratinocytes13,60

Increased levels242 Inflammation

Reepithelialization244

Increased levels51

IL-6 Neutrophils

Macrophages245

Increased levels245 Inflammation

Reepithelialization77,78

Increased levels245

TNF-a Neutrophils

Macrophages60,242

Increased levels51 Inflammation

Reepithelialization51

Increased levels51
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include: EGF, heparin binding EGF (HB-EGF), trans-
forming growth factor-alpha (TGF-a), epiregulin, amp-
hiregulin, betacellulin, epigen, neuregulin-1 (NRG-1),
NRG-2, NRG-3, NRG-4, NRG-5, and NRG-6.14–26 The
main members involved in wound healing include: EGF,
TGF-a, and EGF-HB. These ligands bind to the EGF re-
ceptor (EGFR), a tyrosine kinase transmembrane protein,
resulting in dimerization of the receptor, autophosphorylat-
ion, and tyrosine phosphorylation of downstream pro-
teins.27

In healthy human epidermis, EGFR can be localized
throughout the entire epidermis, although its membranous
presence is most prominent in the basal layer.28,29 There are
also ligands for other receptors, such as b-AR agonists
(catecholamines), angiotensin II, and antimicrobial hCAP-
18, which can transactivate EGFR.30–32 Ultimately this
signaling pathway leads to the activation of a number
of converging pathways promoting cell migration and
proliferation.

In vitro studies, show that activation of the EGFR plays
an important role in reepithelialization by increasing kera-
tinocyte proliferation and cell migration in acute
wounds.33–36 The ligands that bind to EGFR are synthe-
sized as membrane-anchored forms, which are proteolytic-
ally processed to bioactive soluble forms. However, EGFR
ligand shedding is essential for keratinocyte migration and
it has been established that EGF accelerate keratinocyte
migration thus promoting reepithelialization.37,38 It is a
potent mitogen for keratinocytes39,40 and the transmem-
brane forms are able to stimulate growth of keratinocytes
in a juxtacrine manner, suggesting their participation in re-
epithelialization.41

EGF was originally reported by Dr. Stanley Cohen.42,43

EGF is secreted by platelets, macrophages, and fibroblasts
and acts in a paracrine fashion on keratinocytes.44,45 In vi-
tro studies have shown that EGF is up-regulated after
acute injury significantly accelerating reepithelialization46

and increasing tensile strength in wounds.47 One mecha-
nism through which EGF functions is by increasing the
expression of keratins K6 and K16, involved in the prolif-
erative signaling pathway.48,49 One in vitro study demon-
strated that in the epidermis of nonhealing edges of
chronic wounds EGFR was found in the cytoplasm of ker-
atinocytes instead of the membrane.50 This suggests that
the receptor’s down-regulation and mis-localization may
participate in inhibition of epithelialization in patients
with chronic wounds. Other in vitro studies demonstrate
substantial degradation of exogenous EGF and the EGFR
reversible with the addition of metalloproteinase (MMP)
inhibitors in chronic ulcers.51,52 This suggests that EGF is
susceptible to the proteolytic environment found in these
wounds. Clinical trials for chronic wound therapeutics
show that the addition of topical EGF increased
epithelialization and shortened healing time in skin graft
donor-healing sites, venous ulcers (VU), and diabetic foot
ulcers (DFU).53–55 Therefore, EGF may still be useful to
persons with chronic wounds if delivered by a system, such
as gene therapy, polymers, or electrospun nanofibers.56,57

Such techniques maintain a continuous growth factor con-
centration, sustaining its presence in the wound and pre-
venting its rapid degradation.

Another member of this family, TGF-a, is secreted by
platelets, keratinocytes, macrophages, fibroblasts, and

lymphocytes and works in an autocrine fashion on kera-
tinocytes.22,45,58–61 In vitro studies demonstrate that TGF-
a has the ability to increase keratinocyte migration62 and
proliferation63–65 and induce the expression of K6 and
K16.48 In vivo studies suggest a role in early stimulation
and maintenance of wound epithelialization in partial
thickness wounds.66 Despite its seemingly important role
in reepithelialization, absence of this growth factor does
not hinder wound healing. This can be contributed to a
certain degree of compensation by the other growth fac-
tors in the EGF-family.67,68

HB-EGF is also up-regulated in the acute wound.69,70 It
is secreted by keratinocytes and works in an autocrine
fashion71 by binding to the EGFR subtypes HER1 and
HER472 promoting reepithelialization.21 HB-EGF has
been implicated in vivo as having a role in wound healing
as a major growth factor found in wound fluid70 and plays
a role in promotion of keratinocyte migration suggesting
its important role in early stages of reepithelialization.73 In
addition, recent in vitro studies demonstrate a possible
role in angiogenesis.74

FIBROBLAST GROWTH FACTOR (FGF) FAMILY

The FGF family is composed of 23 members. Of these, the
three most important members involved in cutaneous
wound healing are FGF-2, FGF-7, and FGF-10. FGFs
are produced by keratinocytes, fibroblasts, endothelial
cells, smooth muscle cells, chondrocytes, and mast
cells.58,75–78 The high-affinity FGF receptor (FGFR) fam-
ily, which mediates cellular responses to FGF, comprises
four members FGFR1-4. These receptors are tyrosine kin-
ase transmembrane proteins, which work much like
EGFR.79 Essential for activation of the receptor, FGF
must bind proteoglycans, such as heparin, that incorpo-
rates several ligands together in a web.80

FGF-2, or basic FGF, is increased in the acute wound
and plays a role in granulation tissue formation, re-
epithelialization, and tissue remodeling.79,81 In vitro stud-
ies have demonstrated that FGF-2 regulates the synthesis
and deposition of various ECM components, increases
keratinocyte motility during reepithelialization,82–84 and
promotes the migration of fibroblasts and stimulates them
to produce collagenase.18

Levels of FGF-2 are decreased in chronic wounds.52

Clinical trials utilizing FGF-2 in the treatment of DFUs
have failed.85 This is primarily due to FGF-2’s inability to
maintain its efficacy in these patients. Promising data has
been obtained from FGF-2–treated pressure ulcer (PU)
patients showing a trend toward faster wound closure.86

Other important members of this family include FGF-7,
or keratinocyte growth factor-1 (KGF-1), and its homo-
logue FGF-10, or KGF-2, both of which are expressed in
acute wounds.87,88 Both FGF-7 and FGF-10 act in a para-
crine fashion through the FGFR2IIIb receptor found only
on keratinocytes.88 FGF-10 is also able to bind to
FGFR1IIIb and has been shown to have a mitogenic effect
on cells containing this receptor.88,89 In vitro studies have
shown that FGF-7 and FGF-10 stimulate proliferation and
migration of keratinocytes playing an important role in re-
epithelialization. In addition, FGF-7 and FGF-10 increase
transcription of factors involved in the detoxification of re-
active oxygen species (ROS). This helps to reduce ROS-
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induced apoptosis of keratinocytes in the wound bed pre-
serving these cells for reepithelialization (reviewed in Raja et
al.13). In vitro studies have also shown FGF-7 to be impor-
tant during the later stages of neovascularization when lu-
menal spaces and basement membranes are being developed.
It is a potent mitogen for vascular endothelial cells and helps
in the up-regulation of VEGF. It also stimulates
endothelial cells to produce a urokinase type plasminogen ac-
tivator, a protease required for neovascularization.90 Because
of its potential benefit in reepithelialization, studies have been
conducted to evaluate KGF’s effect on chronic wounds. One
clinical trial using topical application of Repifermin (rh-KGF-
2) resulted in accelerated wound healing in VU patients.91

TRANSFORMING GROWTH FACTOR-b (TGF-b)
FAMILY

The TGF-b family includes the following members: TGF-
b1-3, bone morphogenic proteins (BMP), and activins.
TGF-b1, TGF-b2, and TGF-b3 are the main forms found
in mammals, but TGF-b1 predominates in cutaneous
wound healing. They are produced by macrophages, fibro-
blasts, keratinocytes, and platelets92–96 and work by binding
a heteromeric receptor complex consisting of one type I and
one type II receptor, both of which are serine-threonine
kinases. In addition, they bind to a nonsignaling type III
receptor, which functions in presenting TGF-b to the type
II receptor. Once the receptors become autophosphorylated
they activate the downstream signaling molecules belonging
to the Smad family of transcription factors.97

In wound healing, TGF-b1 is important in inflamma-
tion, angiogenesis, reepithelialization, and connective tis-
sue regeneration. It is shown to have increased expression
with the onset of injury.98,99 TGF-b1 facilitates the recruit-
ment of additional inflammatory cells and augments mac-
rophage mediated tissue debridement (reviewed in
Clark81). It is also interesting to note that once the wound
field is sterilized, TGF-b1 may be able to deactivate super-
oxide production frommacrophages in vitro.100 This helps
to protect the surrounding healthy tissue and prepares the
wound for granulation tissue formation.101 In vitro studies
show that TGF-b1 helps initiate granulation tissue forma-
tion by increasing the expression of genes associated with
ECM formation including fibronectin, the fibronectin re-
ceptor, and collagen and protease inhibitors.49,102–106 It is
also involved in up-regulating the angiogenic growth fac-
tor VEGF.107 In addition, in vitro studies show TGF-b1
playing a role in wound contraction by facilitating fibro-
blast contraction of the collagen matrix.108

During reepithelialization, TGF-b1 shifts keratinocyte
integrin expression toward a more migratory phenotype.62

There are conflicting data as to the role of TGF-b1 in kera-
tinocyte proliferation. Several studies both in vitro and in
vivo have demonstrated that TGF-b1 inhibits keratinocyte
proliferation.109–111 Furthermore, animal in vivo studies have
shown that Smad3-null (Smad3ex8/ex8) mice have acceler-
ated cutaneous wound healing compared with wild-type
mice, characterized by an increased rate of reepithelialization
and significantly reduced local infiltration of monocytes.112

However, other studies show that overexpression of TGF-b1
increases the proliferative phenotype of keratinocytes partic-
ularly during the late stages of wound healing.113,114 This il-

lustrates the complexity of signaling necessary to coordinate
cellular processes participating in wound healing, emphasiz-
ing the importance of tight spatio-temporal control, in which
small changes in levels and timing of any growth factor may
have a completely different outcome.

Finally, in the matrix formation and remodeling phase
of wound healing, TGF-b1 is involved in collagen produc-
tion (particularly type I and III). It is also a potent inhib-
itor of metalloproteinase MMP-1, MMP-3, and MMP-9
and a promoter of tissue inhibitor of metalloproteinase
TIMP-1 synthesis, thus inhibiting collagen break-
down.49,104–106

TGF-b1’s ability to stimulate collagen production is so
potent that it can result in pathology. TGF-b1 plays a major
role in the pathogenesis of fibrosis by inducing and sustain-
ing activation of keloid fibroblasts.115 When overexpressed,
TGF-b1 has been shown to stimulate connective tissue
growth factor (CTGF) also shown to play an important
role in the development of hypertrophic and keloid scars.116

It has been shown that localized increase in the release and
activation of TGF-b1 in burn injuries inhibits re-
epithelialization and enhances fibrosis.117 Furthermore, in
the fetal wound the fetal fibroblast responds to its hypoxic
environment by decreasing TGF-b1 transcription that could
explain, in part, the scarless healing seen in the fetus.118–120

The second isoform, TGF-b2, has also been shown to
have a role in wound healing. Like TGF-b1, TGF-b2 is in-
volved in all stages of wound healing. It is involved in re-
cruiting inflammatory cells and fibroblasts to the wound
site. In vivo experiments show that TGF-b2 stimulates the
formation of granulation tissue by inducing angiogene-
sis.121,122 It also has been shown to accelerate re-
epithelialization in vivo.121,123 During matrix formation
and remodeling, TGF-b2 increases protein, DNA, and
collagen production. By stimulating recruitment of fibro-
blasts to the wound site, the combined result is increased
collagen deposition (particularly type I and III) and scar
formation in vivo.121,124

The third isoform, TGF-b3, has been shown to play a
role in wound healing. In vivo studies have shown that
TGF-b3 promotes wound healing by recruiting inflamma-
tory cells and fibroblasts to the wound site and by facili-
tating keratinocyte migration. TGF-b3 has also been
shown to be a potent stimulant of neovascularization and
vascular rearrangement.125,126 Furthermore, it has been
demonstrated that TGF-b3 is a potent inhibitor of DNA
synthesis in human keratinocytes. These findings along
with the observation of constitutive TGF-b3 expression in
the intact epidermis support the hypothesis that activation
of TGF-b3 may be an important stop signal for terminal
differentiation in this tissue.125,127,128 It has also been
shown that unlike the other two isoforms which promote,
scar formation, TGF-b3 inhibits scarring and promotes
better collagen organization in vivo.124

In chronic wounds, TGF-bs are significantly de-
creased52 possibly due to degradation from proteolytic en-
zymes, particularly neutrophil elastase.129 It has also been
shown that TGF-bs can be sequestered by molecules like
decorin, fibrinogen, albumin and alpha2-macroglobulin,
limiting their bioactivity.130,131 Early work on clinical tri-
als using exogenous TGF-b2 on venous stasis ulcers was
promising.132 Nevertheless, TGF-b has failed multiple
clinical trials for treatment of chronic wounds.
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ACTIVINS

Activins are members of the TGF-b superfamily produced
by fibroblasts and keratinocytes. Their biological func-
tions are mediated by serine/threonine kinase signaling re-
ceptors.133 During wound repair there is up-regulation of
activin where it plays a role in reepithelialization. In vitro
studies suggest that activin effects keratinocyte prolifera-
tion in an indirect fashion by inducing the expression of
growth factors in dermal fibroblasts.134 Activin by itself
inhibits keratinocyte proliferation135 and induces terminal
differentiation of keratinocytes134. Therefore, a theoretical
therapeutic approach for healing chronic wounds could be
delivering activin to a wound in the presence of dermal fi-
broblasts.

BONE MORPHOGENIC PROTEINS (BMPs)

BMPs are also members of the TGF-b superfamily. They
also work via a heterodimeric serine/threonine kinase re-
ceptor. BMP-2, -4, -6, and -7 are all expressed in the
wound tissue.136 In particular, BMP-6 is highly expressed
in regenerated keratinocytes as well as in fibroblasts in the
acute wound.137 After wound closure, BMP-6 accumulates
throughout the suprabasal layer of the newly formed epi-
dermis.137 In vitro studies have shown it to be important in
keratinocyte differentiation.138,139 Furthermore, overex-
pression of BMP-6 has been shown to severely delay re-
epithelialization in vivo. There is evidence showing that
BMP-6 levels are elevated in chronic wounds perhaps con-
tributing to the pathology of these ulcers.137

PLATELET DERIVED GROWTH FACTOR (PDGF)

PDGF comprises a family of homo or heterodimeric
growth factors including PDGF-AA, PDGF-AB, PDGF-
BB, PDGF-CC, and PDGF-DD. PDGFs are produced by
platelets, macrophages, vascular endothelium, fibroblasts,
and keratinocytes.58,140,141 These ligands bind to two
different transmembrane tyrosine kinase receptors (alpha
and beta).142 Ligand binding causes receptor dimerization,
leading to autophosphorylation of the receptors. This cre-
ates a docking site for SH2 (Src homology 2) domain-con-
taining signaling molecules, whereby several signaling
pathways are then activated.143

PDGF plays a role in each stage of wound healing.
Upon injury PDGF is released from degranulating plate-
lets and is present in wound fluid.144,145 This stimulates
mitogenicity and chemotaxis of neutrophils, macrophages,
fibroblasts, and smooth muscle cells to the wound site.146

It also stimulates macrophages to produce and secrete
growth factors such as TGF-b. Much like TGF-b, PDGF
also augments macrophage-mediated tissue debridement
and granulation tissue formation.141 The effects of PDGF
on inducing angiogenesis are organ dependent. For exam-
ple, production of PDGF in cardiac microvascular cells
leads to induction of VEGF and VEGF-receptor-2 sug-
gesting an important role in cardiac angiogenesis.147 With
regard to wounding, it has been shown in vitro that PDGF
works synergistically with hypoxia to increase the expres-
sion of VEGF as seen in ischemic injury.148 PDGF is par-
ticularly important in blood vessel maturation. In vivo
experiments demonstrated that PDGF is important in re-

cruiting pericytes to the capillaries and thus increase the
structural integrity of these vessels.149,150 In addition, in
vivo studies show that PDGF in combination with VEGF-
E not only increases pericyte recruitment but also smooth
muscle cells further enhancing the integrity of the capillar-
ies. It should be noted however that PDGF’s angiogenic
effect is weaker than that of FGF and VEGF and does not
appear to be essential for the initial formation of blood
vessels.141 PDGF also plays are role in reepithelialization
by up-regulating the production of IGF-1 and
thrombospondin-1 in vitro.151 IGF-1 has been shown to
increase keratinocyte motility and thrombospondin-1 de-
lays proteolytic degradation and promotes a proliferative
response in the wound in vitro.38,152 PDGF has also been
shown to enhance the proliferation of fibroblasts and thus
the production of ECM.153 In addition, it stimulates fibro-
blasts to contract collagen matrices and induces the myo-
fibroblast phenotype in these cells.154 During tissue
remodeling, PDGF helps to break down old collagen by
up-regulating matrix metalloproteinases.155

Levels of PDGF are decreased in chronic wounds.52 It has
been shown that PDGF is susceptible to the proteolytic
environment found in the chronic wound and its degrada-
tion can be reversed with the addition of MMP inhibitors.51

It is the increased MMP activity that degrades the ECM in-
hibiting cell migration and collagen deposition. MMPs also
break down growth factors and their target cell receptors.51

Recombinant human variants of PDGF-BB (Be-
caplermin) have been successfully applied in diabetic and
PUs and it is the only FDA approved drug for chronic
wound treatment. Margolis et al.156,157 was the first to dem-
onstrate that gene delivery of PDGF can successfully and
safely be tested in patients with chronic wounds. Recently, a
clinical trial using Adenovirus-PDGF-BB has been initiated
for persons with diabetic ulcers.158 These advances herald in
a new era in the treatment of ulcers and growth factor ther-
apy that may enable many of the growth factors that accel-
erate healing experimentally to be effective in patients, i.e.,
by safely testing a new delivery system gene therapy.

VASCULAR ENDOTHELIAL GROWTH
FACTOR (VEGF)

The members of the VEGF family include: VEGF-A,
VEGF-B, VEGF-C, VEGF-D, VEGF-E, and placenta
growth factor.159 VEGF-A is produced by endothelial
cells, keratinocytes, fibroblast smooth muscle cells, plate-
lets, neutrophils, and macrophages.69,160–164 It binds to the
tyrosine kinase surface receptors Flt-1 (VEGF receptor-1)
and KDR (VEGF receptor–2 [VEGFR-2])165–167 localized
to the endothelial surface of blood vessels.168–170 These re-
ceptors have different functions. KDR is an important
mediator of chemotaxis and proliferation of endothelial
cells in vitro.171 It is also responsible for inducing endo-
thelial cell differentiation. In comparison, Flt-1 is required
for organization of blood vessels.172,173 Flt-1 may also be
involved in mediating vascular permeability,174 MMP ex-
pression in vascular smooth muscle cells,175 and the induc-
tion of anti-apoptotic proteins.176

VEGF-A is important in wound healing because it pro-
motes the early events in angiogenesis, particularly endo-
thelial cell migration177–179 and proliferation180–184 as seen
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in several in vitro studies. VEGF-A transcription and se-
cretion along with the VEGFR are elevated in the acute
wound.185–187 Upon injury activated platelets release
VEGF-A.161,188 In addition, macrophages release VEGF-
A during wound healing186 as well as releasing TNF-a,
which induces VEGF-A expression in keratinocytes and
fibroblasts.185 Other cytokines and growth factors that act
as paracrine factors enhancing VEGF-A expression in-
clude TGF-b1, EGF, TGF-a, KGF, bFGF, PDGF-BB,
and IL-1b.185,189,190 A major stimulus for the release of
VEGF-A in the acute wound setting is hypoxia due to
metabolic derangements in the wound environment. The
resulting angiogenesis restores tissue perfusion, reestab-
lishes microcirculation, and increases oxygen tension at
the wound site.191 In particular, hypoxia enhances VEGF-
A expression in monocytes, fibroblasts, keratinocytes, my-
ocytes, and endothelial cells. It also increases the expres-
sion of Flt-1 receptors on endothelial cells.192 As a result,
there is a gradient of VEGF-A expression that parallels the
hypoxic gradient.193 In addition to its angiogenic effects,
VEGF-A plays a role in lymphangiogenesis during wound
healing. One in vitro study proposed that VEGF-A pro-
motes lymphatic vasculature formation via activation of
VEGFR-2.194

Chronic wounds such as DFUs,195–197 venous stasis ul-
cers,198,199 and PUs200–203 have areas of local skin ischemia
making VEGF-A a possible therapeutic modality. In ani-
mal studies, it has been shown that the administration of
VEGF-A restores impaired angiogenesis found in diabetic
ischemic limbs.204–208 Other in vivo experiments show that
show that VEGF-A improves reepithelialization of dia-
betic wounds associated with enhanced vessel forma-
tion.209 Despite these improvements, however, exogenous
administration of VEGF induces sustained vascular leak-
age and promotes the formation of disorganized blood
vessels as well as malformed and poorly functional lym-
phatic vessels.210,211 In human studies, intramuscular gene
transfer of VEGF165 to patients with ischemic ulcers and/
or rest pain secondary to peripheral arterial disease re-
sulted in limb salvage significantly decreasing rest pain.212

VEGF-C is also up-regulated during wound healing.
This growth factor is primarily released by macrophages
and is important during the inflammatory stage of wound
healing.213 VEGF-C works mostly through the VEGF re-
ceptor-3 (VEGFR3), which is expressed in lymphatic en-
dothelium, fenestrated endothelia, and monocytes/
macrophages.213–215 However, the proteolytically pro-
cessed mature form of VEGF-C can also activate VE-
GFR-2 in blood vessel endothelium.216,217 In vitro studies
show this growth factor playing a role in facilitating he-
matopoietic and inflammatory cell recruitment to the
wound site both directly and indirectly by binding to VE-
GFR-2 increasing vascular permeability.218,219 In vitro
studies also show VEGF-C playing a role in lymphoangio-
genesis by binding to VEGFR-3220 and angiogenesis after
proteolytic cleavage by binding to VEGFR-2.216–219 Be-
cause DFUs are a result of insufficient blood perfusion
coupled with impaired angiogenesis, treatment with
VEGF-C has been proposed. In an in vivo animal model
VEGF-C was administered via an adenoviral vector to ge-
netically diabetic mice resulting in accelerated healing rate.
These results suggest potential therapeutic function in
treatment of diabetic wounds.159

Placental growth factor (PLGF) is a proangiogenic mol-
ecule that is up-regulated during wound healing. In the
skin, this growth factor is expressed by keratinocytes and
by endothelial cells. This growth factor acts by binding and
activating the VEGFR-1. Like VEGF-C, PLGF plays a
role during the inflammatory stage of wound healing. It
has been shown, in vitro, to promote monocyte chemotax-
is and bone marrow-derived precursor cell mobiliza-
tion.221–223 It also is involved in promoting granulation
tissue formation, maturation, and vascularization. It is
thought to work synergistically with VEGF by potentia-
ting its proangiogenic function.224,225 In addition, PLGF
has been shown to directly stimulate cultured fibroblast
migration, suggesting a direct role in accelerating granula-
tion tissue maturation. In DFUs, it has been shown that
PLGF expression is significantly reduced. The observation
that PLGF specifically enhances adult pathophysiological
neovascularization224 does not interfere with lymphatic
vessel function, and induces augmented permeability only
when administered at high concentration.210,226 This
makes it an ideal candidate for therapeutic modulation
for adult angiogenesis. Animal models using genetically
diabetic mice have shown that diabetic wound treatment
with an adenovirus vector expressing the PLGF gene sig-
nificantly accelerated the healing process compared with
wounds treated with a control vector.225

CONNECTIVE TISSUE GROWTH FACTOR
(CTGF)

CTGF is an ECM-associated heparin-binding protein that
binds directly to integrins. It is synthesized by fibroblasts
and stimulates proliferation and chemotaxis of these cells.
CTGF expression is increased after injury and is involved
in granulation tissue formation, reepithelialization, and
matrix formation and remodeling.227 In vitro experiments
have shown that CTGF promotes endothelial prolifera-
tion, migration, survival, and adhesions in angiogene-
sis.228,229 It has also been demonstrated that CTGF is
required for reepithelialization in wound healing by pro-
moting cell migration. It is thought to be induced by TGF-
b through the Ras/MEK/ERK MAPK signalling path-
way.230 In addition, CTGF is a strong inducer of ECM
proteins, such as collagen type I and fibronectin and their
integrin receptors, and acts as a mediator of TGF-b.231

Much like TGF-b, CTGF also has increased expression in
hypertrophic and keloid scars.116

GRANULOCYTE MACROPHAGE-COLONY
STIMULATING FACTOR (GM-CSF)

GM-CSF has been shown to be increased in the epidermis
in wounded skin.232 It is particularly important during the
inflammatory stage of wound healing increasing the num-
ber of neutrophils and enhancing their function at the
wound site.233 In vitro studies have shown GM-CSF to in-
crease keratinocyte proliferation and thus enhance re-
epithelialization. It has been suggested that GM-CSF
works directly on the keratinocyte but also indirectly by
up-regulating IL-6.232 In addition, in vitro studies have
demonstrated this growth factor to increase migration and
proliferation of endothelial cells suggesting a role in
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angiogenesis.234 In patients with DFUs, subcutaneous in-
jections of GM-CSF resulted in quicker resolution of cell-
ulites, a trend toward ulcer healing and lower incidence of
amputation.235 GM-CSF applied locally in the wound is
likely to have significant patient benefit for chronic
wounds.236–241 Further study in DFUs and or PUs would
be potentially highly useful, and based on the experimental
and clinical data this may be another potential therapeutic
modality for chronic ulcers.

PROINFLAMMATORY CYTOKINES

Proinflammatory cytokines, particularly IL-1 and inter-
leukin-6, and TNF-a are up-regulated during the inflam-
matory phase of wound healing.242 IL-1 is produced by
neutrophils, monocytes, macrophages, and keratinocytes.
Upon wound healing it is immediately released by keratin-
ocytes. In addition to having a paracrine effect, it also
works in an autocrine fashion increasing keratinocyte mi-
gration and proliferation (reviewed in Raja et al.13). IL-1
has been shown to induce the expression of K6 and K16 in
migrating keratinocytes.1,243 In addition, IL-1 activates fi-
broblasts and increases the secretion of FGF-7.244

IL-6 is produced by neutrophils and monocytes and has
been shown to be important in initiating the healing re-
sponse. Its expression is increased after wounding and
tends to persist in older wounds.83,84,245 It has a mi-
togenic77 and proliferative78,199 effect on keratinocytes
and is chemoattractive to neutrophils.

Much like IL-1, TNF-a can induce the production of
FGF-7, suggesting that it can indirectly promote re-
epithelialization.246,247 Alone, TNF-a has been shown to
inhibit wound reepithelialization. The effects of exogenous
TNF-a are dependent on concentration and duration of
exposure emphasizing the importance of balancing the
proinflammatory signals controlling wound healing.
TNF-a, at low levels, can promote wound healing by indi-
rectly stimulating inflammation and increasing macro-
phage produced growth factors. However, at higher
levels, especially for prolonged periods of time, TNF-a
has a detrimental effect on healing. TNF-a suppresses syn-
thesis of ECM proteins and TIMPs while increasing syn-
thesis of MMPs (MMP-1, MMP-2, MMP-3, MMP-9,
MMP-13, and MT1-MMP).248–251 In addition, elevated
levels of IL-1b have a similar response to that of TNF-a.
Both TNF-a and IL-1b have been shown to perpetuate
each others expression and therefore amplify this signal.51

Levels of TNF-a and IL-1b are elevated in chronic
wounds.252,253 In addition, infection that is common in
chronic wounds further contributes to prolonged inflam-
mation. Furthermore, nonhealing wounds also exhibit el-
evated levels of interstitial collagenases, gelatinases, and
stromelysins that have been shown to be induced by TNF-
a and IL-1b.252 It has, therefore, been hypothesized that in
chronic wounds, chronic inflammation causes inflamma-
tory cells to secrete TNF-a and IL-1b that synergistically
increase production of MMPs while reducing synthesis of
TIMPs. It is increased MMP activity that degrades the
ECM inhibiting cell migration and collagen deposition.
MMPs also break down growth factors and their target
cell receptors.51

CHEMOKINES

Chemokines are also active participants in the wound
healing process because they stimulate the migration of
multiple cell types in the wound site particularly inflam-
matory cells. In addition, the presence of chemokine recep-
tors on resident cells suggests that they also contribute to the
regulation of reepithelialization, tissue remodeling, and an-
giogenesis (reviewed in Raja et al.13). The CXC, CC, and C
families of ligands act by binding to G protein-coupled sur-
face receptors, CXC-receptors and the CC-receptor.

Macrophage chemo-attractant protein (MCP-1 or CCL2)
is a CC family chemokine. MCP-1 is induced in keratin-
ocytes upon wounding. It is a chemoattractant for mono-
cytes/macrophages, T-cells, and mast cells.254 Sustained
expression of this chemokine permits a prolonged presence
of neutrophils and macrophages in the chronic wound
contributing to a prolonged inflammatory response.255

However, lack of MCP-1 in vivo significantly delays wound
healing particularly with reepithelialization, angiogenesis,
and collagen synthesis as seen in mouse models.256 This sug-
gests that in the mouse MCP-1 may be influencing gene
expression/protein synthesis of growth factors in murine
macrophages. However, in humans MCP-1 does not seem
to regulate growth factor production by these cells.257 Addi-
tion of exogenousMCP-1 to wounds in animals yielded only
moderate improvements in wound healing.258

Interferon inducible protein 10 (IP-10 or CXCL10) is
another cytokine part of the CXC family. In acute wounds
and chronic inflammatory states, there is increased expres-
sion by keratinocytes. IP-10 has been demonstrated to
negatively impact wound healing. Overexpression of IP-10
results in a more intense inflammatory response by recruit-
ing lymphocytes to the wound site.257,259 In vitro studies
show that IP-10 delays reepithelialization and prolongs the
granulation phase. This cytokine inhibits the migration of
dermal fibroblasts by blocking their release from the sub-
stratum regulated by IP-10 inhibition of EGF and hep-
arin-binding EGF-like growth factor receptor-mediated
calpain activity.44 In addition, it has been shown that IP-
10 inhibits angiogenesis (reviewed in Belperio et al.260).
A suggested mechanism can be seen in the related cyto-
kine, PF4. PF4 inhibits endothelial cell migration, prolif-
eration, and angiogenesis in response to bFGF. PF4
inhibits bFGF binding its receptor by forming heterodim-
eric complexes via heparin binding. It has been suggested
that IP-10 might work in a similar fashion.261

Interleukin-8 (IL-8 or CXCL8) is a member of the CXC
family.13 Its expression is increased in acute wounds257 and it
has been shown to play a role in reepithelialization by increas-
ing keratinocyte migration and proliferation.262,263 It also in-
duces the expression of MMPs in leukocytes, stimulating
tissue remodeling.257 It is, however, a strong chemoattractant
for neutrophils, thus participating in the inflammatory re-
sponse.264 High levels of this chemokine accumulate in non-
healing wounds. Furthermore, addition of IL-8 in high levels
decreases keratinocyte proliferation and collagen lattice
contraction by fibroblasts.265 It has been shown that there
are relatively low levels of IL-8 in the fetus. This finding may
be responsible for the lack of inflammation during the fetal
wound healing and contribute to scarless wounds.266

The GRO-a (CXCL1) chemokine is also a member of
the CXC family. This cytokine is a potent regulator of neu-
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trophil chemotaxis and is up-regulated in the acute wound.
In vitro studies suggest a role in reepithelialization by pro-
moting keratinocyte migration.257,259

The SDF-1 (CXCL12) chemokine is a member of the
CXC family and works via the CXCR4 receptor. It plays a
role in the inflammatory response by recruiting lympho-
cytes to the wound and promoting angiogenesis. Endothe-
lial cells, myofibroblasts, and keratinocytes express SDF-
1. When homeostasis is disturbed in an acute wound SDF-
1 is seen at increased levels at the wound margin.267 An in
vivo study has demonstrated that SDF-1 promotes prolif-
eration andmigration of endothelial cells.268 In addition, it
recruits proangiogenic subpopulations of hematopoietic
cells (bone marrow progenitors) from circulation to pe-
ripheral tissues.269 SDF-1 may also enhance keratinocyte
proliferation thus contributing to reepithelialization.270 It
has been suggested that due to the chemokines tightly con-
trolled expression, both site and time point of interference
indicates the outcome of intervention.267 Recently, it has
been shown in diabetic mouse (db/db) wound model that
decreased level of SDF1a prevents circulating bone mar-
row progenitor cell migration into the wound site.271,272

SUMMARY

Growth factors, cytokines and chemokines are crucial
for coordinating multiple cell types during the healing
process, making cutaneous wound healing possible.
Proper wound healing is guided by stringent regulation of
these agents as well as a wound environment that favors
their activity. In the acute wound, the healing process
is controlled by spatio-temporal action of these growth
factors, cytokines and chemokines leading through
progression of healing and resulting in the reestablishment
of the skin’s barrier function. This is contrasted by the
chronic wound, which is arrested in a state of chronic
inflammation. As a consequence, the generation of a
proteolytic environment by inflammatory cells infiltrating
the wound site as well as prolonged up-regulation of
pro-inflammatory cytokines and chemokines inhibits
normal progression of wound healing. This environment
subjects various growth factors and cytokines to degrada-
tion and sequestration in the wound site inhibiting their
function.

Topical delivery of growth factors to chronic wounds
must be resistant to rapid degradation form the
wounds proteolytic environment and have sustained
release. This is readily being accomplished using gene
therapy. Currently, multiple novel delivery systems, in-
cluding adenovirus and slow-releasing polymers are being
investigated as growth factor delivery systems. The most
promising growth factors that require clinical testing are
VEGF, bFGF, andGM-CSF. PDGF-BB has already been
approved by the FDA and is currently used in the treat-
ment of chronic ulcers. Living cell therapy, which is also
FDA approved, may be considered as sustained, simulta-
neous multiple growth factor therapy. Both healthy kera-
tinocytes and fibroblasts produce at least 17 different
growth factors273 and secrete these factors stimulating
patients’ cells to participate in healing process.274,275 De-
spite these novel approaches, wound debridement should
remain an integral component in treating chronic wounds.
Debridement facilitates growth factor delivery by restor-

ing the expression of growth factor receptors that are not
properly expressed at the nonhealing edge of chronic ul-
cers, making cells unresponsive to exogenous growth fac-
tor therapy.50,273
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